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SECOND MOMENT CLOSURE MODELING OF
COMPLEX TURBULENT FLOWS

AFOSR GRANT NUMBER: FA9550-05-1-0177
Sharath S. Girimaji

Department of Aerospace Engineering
Texas A & M University, College Station, Texas 77843

Abstract

Turbulence subject to unsteady forcing can exhibit novel features that cannot be explained
using the well-known steady-turbulence paradigm. Modeling and prediction of such statistically
unsteady flows arc important in many practical AFOSR applications: turbine flows, wake-flows
with vortex shedding, etc. Further, many flow control strategies depend upon the knowledge of
unsteady turbulence dynamics to achieve the desired objectives. However, our understanding
of unsteadily-forced turbulence dynamics or our ability to predict them is inadequate. Un-
steady forcing implies a mcan velocity-gradient field that varies with time. Temporally varying
mean-velocity gradient comprises of one or more of the following four fundamental forms of
unsteadiness: 1) rotation of the eigen-directions of the mean strain rate tensor (with eigen
values maintained constant); 2) temporal variation in the eigen values of the mean strain rate
tensor (with eigen directions fixed); 3) rotation of the mean vorticity-vector axis (with vorticity
magnitude maintained constant); and 4) temporal variation of the mean vorticity-vector mag-
nitude (with the direction fixed). For example, homogeneous shear flow in a rotating reference
frame, when considered in an inertial frame, is a combination of a mean strain-rate tensor
with rotating eigen vectors (and constant eigen values) and a constant vorticity vector. In this
project we undertook a systematic study of these various forms of unsteadiness. Two studies
were completed and the results reported in two journal publications - in Physics of Fluids and
Journal of Fluid Mechanics. Two other studies were initiated. All these efforts are detailed in
this final report.

1 Introduction

Over the last several decades important progress has been made in our capability to model and
predict steadily-forced turbulent flows with nearly rectilinear streamlines. The next engineering
challenge is the modeling of turbulent flows subject to complicating influences such as unsteady
forcing (due to external influences or internal instabilities), streamline curvature, frame-rotation
and heat release. Many of the applications of interest to the Air Force involve flows in which
turbulence is strongly modified by the above factors. It is well known that such flows can be best
modeled in mathematically rigorous manner only at the level of second moment closure. The
objective of the present research is two-fold: (i) perform direct numerical simulations (DNS)
and rapid distortion theory (RDT) calculations of unsteadily forced turbulent flows to infer
the behavior of pressure-strain correlation and other key turbulent processes; and (ii) develop
pressure-strain correlation and other closure models which incorporate the requisite complex
physics and are consistent with constraints based on the time-reversibility characteristics of the
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Navier-Stokes equations. These constraints will serve specific purposes for enhancing the model
capabilities in unsteady flows.

Over the last two decades, direct numerical simulations (DNS) and rapid distortion theory
(RDT) have played a crucial role in providing important insight into fundamental turbulence
processes leading to the development of improved closure models. However, much of this
progress is restricted to turbulent flows subject to steady forcing. There are numerous turbulent
flows of interest to the Air Force that are subject to time-dependent (unsteady) forcing: e.g.,
flows in turbines, internal combustion engines, vortex-shedding in wakes. Furthermore, there
are many flow control strategies attempting to take advantage of unsteady turbulence dynamics
to modify/control flow. Our understanding of fundamental turbulence processes in flows with
rapidly varying mean flows is inadequate. To accumulate a reliable knowledge base on these
flows, we must revisit many of the canonical flows and re-examine the turbulence features in
the context of unsteady forcing.

Classification of unsteadiness. Detailed investigations of turbulence subject to unsteady
forcing are relatively recent. Unsteady forcing implies a time-varying mean-velocity gradi-
ent which encompasses a very wide range of possibilities. Presumably, different types of un-
steadiness can have vastly different effects on turbulence. This renders a systematic study of
unsteadily-forced turbulence rather difficult. However, some progress can be made by recog-
nizing that any arbitrary unsteadiness in the mean-velocity gradient can be expressed as a
combination of four elementary forms of variations: 1) temporal changes in the eigen-values
of the mean strain rate tensor, with eigen-directions fixed; 2) rotation of the eigen-directions
of the mean strain rate tensor, with eigen-values maintained constant; 3) temporal changes of
the mean vorticity-vector magnitude, with the direction fixed; and, 4) rotation of the mean
vorticity-vector axis, with its magnitude maintained constant. Our ultimate goal is to study,
in isolation, the effects of each type of unsteadiness on turbulence.

Studies performed during funding period. An idealized flow which has contributed
greatly to our current understanding of steadily-forced turbulence is the homogeneous shear
flow. We revisit this flow and study it in the context of unsteady forcing. Our objective is to
perform DNS and RDT of homogeneous flows subject to periodic and rotating mean shear. The
goal is to gain important insight into the various physical processes in statistically unsteady
turbulent flows and evaluate the validity of current turbulent closures. We will then attempt to
derive advanced second-moment closure models that can effectively simulate these effects. It is
our expectation that these second moment closure models will serve as the starting point from
which sophisticated subgrid stress closure models can be derived for high-resolution computa-
tions. Two studies have been completed and two others initiated during this funding period.
We will detail these studies later.

Issues investigated. We address the following issues: (a) Effect of forcing frequency on
the evolution of turbulence parameters such as kinetic energy., dissipation and Reynolds stress
anisotropy; (b) Budgets of Reynolds stress and kinetic energy evolution; (c) Phase lag between
applied mean strain and Reynolds stress; and (d) Comparison between DNS results and second
moment closure models.
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This project summary presents the most prominent results reported in two accepted journal
articles:

1. Yu and Girimaji (2006) 'DNS of homogeneous shear subject to periodic turbulence'. To
appear in Journal of Fluid Mechanics.

2. Girimaji, O'Neil and Yu (2006) 'Rapid distortion analysis of turbulence subject to rotating
shear'. To appear in Physics of Fluids.

The reader is referred to these articles for more detailed results and discussions.

2 Periodic shear flow

The first flow is a homogeneous periodic shear flow where the mean velocity gradient is given
by ou (t))= Smax5ifl(Wt)6iilj 2. (1)

(We use the following notation: V, U and u represent the total, mean and fluctuating velocity
vectors) Thus, the mean-strain tensor has fixed eigen directions and temporally sinusoidal
eigen values (elementary form 1 in the above list). In our DNS (direct numerical simulation)
investigation, the desired velocity gradient is produced by introducing a body force which is
a deterministic function of space and time. To sustain the initial homogeneous mean shear, a
constant mean pressure gradient field is sufficient.

Governing Equations. To achieve time-varying shear flow, additional body force, F(x, t),
is required. For this purpose we will consider a body force that is a function of space and
time, but completely deterministic: F does not contain a fluctuating part. Now the mean and
fluctuating velocity equations can be written as:

oUi OU O(uiuk) OP
9+ Uk-aX + Xk -- (2)

Oui Ou & Op' U, a2U,
+Uk + ((uiUk-(UiUk)) Uk ±1/+ - . (3)

The fluctuating velocity and pressure field equations are unaffected by the forcing, provided
the force is purely deterministic. The applied body force is

F wS,,,,(y - y,.f ) cos(wt)z, (4)

where i is the unit vector along x-direction. Also, (x, y) correspond to (XI, x2) directions and
Y,ef is a reference point which we take to be at the center of the computational domain.
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2.1 Results.

In this section, wc will describe the observed results. Detailed analysis and explanations are
provided in the next section. Figure 1 shows the evolution of the kinetic energy for various
forcing frequencies over an extended period of time. It is clear that three types of responses
are possible depending on the frequency of forcing. The three regimes are identified as low-,
intermediate- and high-frequency regimes.

When the forcing frequency is low (A/S < 0.14), the evolution of the turbulent kinetic
energy ultimately asymptotes to a constant value which is smaller than the initial value. At
intermediate forcing frequencies (A/S is between 0.14 and 0.3), k increases at long times. At
higher forcing frequencies(A/S > 0.3), the evolution of k shows a periodic variation, with the
mean in the vicinity of initial value.

In Fig. 2, the kinetic energy evolutions of A/S = 0.16 case computed with three different
wavenumber sets (of 6078, 13768 and 24318 discrete wavenumbers) are compared. The three
plots are absolutely indistinguishable demonstrating that our results are not dependent on
wave-number discretization. All the other results presented in this study employ 13768 discrete
wave-numbers.

2.2 Low frequency Regime

Figure 3 shows the evolution of k in the low frequency regime. For steady shear (A/S = 0),
k increases exponentially. At the lowest non-zero frequency (A/S = 0.02), k increases initially
and, after reaching its maximum value, decreases monotonically to an asymptotic value. The
same trend continues as frequency increases, with the initial peak and final asymptotic value
decreasing progressively. At the highest frequency in this range, the kinetic energy is initially
periodic with cycle-mean gradually declining. At later stages, it asymptotes monotonically to
a small value. It appears that A/S = 0 case is a singular limit in the low frequency regime as
the behavior at vanishingly small values is quite different.

Figure 4 shows the evolution of b1l. For steady shear (A/S = 0), bil asymptotes to the
maximum allowable value of 2/3. This indicates that almost all of the kinetic energy in the
steady forcing case is contained in the (ului) component. For non-zero frequencies, bl, and b22

(figure not shown) converge to -1/3. Thus, all of the kinetic energy is contained in (u3 u3 ). Prior
to the asymptotic stage, the evolution of bl, is different in the A/S = 0.02 and 0.14 cases. In
the A/S = 0.02 case, b11 grows initially reaching a maximum, and then decreases monotonically
to -1/3. In the A/S = 0.14 case, bl, decreases first, then oscillates with decreasing cycle-mean
and asymptotes to -1/3 at a slower rate.

In Figure 5, for A/S = 0 we see that, as expected, P11 is always positive and grows with
time. This leads to monotonic growth of kinetic energy at long times. For non-zero frequencies,
the evolution of P11 is quite different. The production can be positive or negative at early times,
but is mostly negative at later times and subsequently asymptotes to zero.

Figure 6 shows the evolution of the pressure-strain redistribution component 'DFHj. In the
zero-frequency (constant shear) and A/S = 0.02 cases, the pressure-strain correlation always
removes energy from (ujuj). In the A/S = 0.02 case, there is a period of time (5 < St < 10)
when both production and pressure-strain correlation are negative. In the A/S = 0.14 case,

4)11 always counters the effects of P11 . For all frequencies, 4)11 asymptotes to zero.
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2.3 Intermediate frequency Regime

The evolution of the kinetic energy for the intermediate range of frequencies (0.14 < A/S < 0.3)
is shown in Fig. 7. For all frequencies, k grows over long times. However, the growth patterns
are not same for different frequencies. In the A/S =0.16 case, k increases initially for a short
time and decreases, apparently asymptoting to a lower value. Then, rather unexpectedly, at
St =20, k increases dramatically followed by a decline that negates some, but not all, of the
gain. Then it appears steady for a period of time. Again, abruptly, the growth-decay-steady
pattern reappears. In the A/S =0.20 case, k varies periodically, and the cycle-mean increases
slowly (compared to the A/S =0.16 case) in time.

Figure 8 shows the evolution of b1 l. We can see that bl, exhibits strong oscillations at both
frequencies. In the A/S =0.16 case, the average magnitude of bl, is larger than that in the
A/S =0.20 case, which reflects the different structure of anisotropy in the two cases. Both P11

and 411/k also exhibit strong oscillations (Figs. 9 and 10). In these cases, (D11 always counters
the effects of P,I.

2.4 High Frequency Regime

At high frequencies (A/S > 0.30), turbulence statistics vary almost periodically as shown in
the Figs. 11-14. The amplitude of the variation is smaller than those in low and intermediate
regime. Within this range, the amplitude decreases as the forcing frequency goes up. The
cycle-mean of k is slightly larger than its initial value, while the cycle-mean of b,1 , Pn1 and (I I
are all around zero. Clearly, the turbulence is close to its initial isotropic state at all times.
Production and pressure-strain distribution appear to affect the velocity field very little.

2.5 Effects of the phase of forcing shear.

Thus far we have discussed the effects of forcing (shear) frequency on turbulence. Now, we will
briefly discuss the effects of initial phase of the periodic shear. For any arbitrary initial phase
that a new set of coordinates can be found in which only the (1,2) component of the mean
velocity gradient tensor is non-zero. Since the fluctuating velocity field is initially isotropic,
the coordinate transformation will not change the statistical description of the initial velocity
fluctuations. Thus, all of the preceding results pertaining to turbulent kinetic energy and its
production will be invariant to the initial phase of the periodic shear.

Before concluding this section, it is important to point out that, if the rapid pressure
term is omitted from the calculations, the turbulent statistics vary purely periodically for
all frequencies. Thus, all of the non-periodic features of the observed behavior at low and
intermediate frequencies must be attributed to the effects of rapid pressure term. In the next
section, we will attempt to understand and explain the role of rapid pressure-strain correlation.

2.6 Discussion

Many important aspects of rotating-shear RDT results presented in the previous section differ
significantly from those of homogeneous shear flow in a rotating reference frame and of periodic
shear flow (mean velocity gradient given by Eq. (1)). The most important difference is at small
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unsteadiness frequencies. In the present case, at low forcing frequencies, the kinetic energy level
declines and attains a steady state value that is smaller than the initial value. On the contrary,
in the other two flows, asymptotic growth similar to the steady forcing case is observed. This
growth rate, however, decreases with increasing unsteadiness frequency in both homogeneous
shear in rotating reference frame and periodic shear (Eq. (1)) cases. Thus, the steady-forcing
behavior is a natural limiting case of the vanishing unsteadiness frequency trend in those flows.
In the present case, the steady-forcing behavior is distinctly different from the small frequency
trend. At intermediate unsteadiness frequencies, turbulence grows in spurts in the present case.
This type of sporadic growth pattern is not seen in other unsteady flows. The physical reasons
for the growth and the intermittent manner in which it happens are unclear. On the other
hand, the behavior at high forcing frequency is quite understandable. When the shear-rotation
timescale is much smaller than that of turbulence evolution, production and rapid pressure-
strain correlation process can only affect small perturbations on the initial field. We will now
attempt to provide a qualitative explanation for the observed apparently aberrant behavior at
low and intermediate frequencies.

Steady shear: To explain the observed behavior at this limit, we first recapitulate the RDT
results of steady homogeneous shear (see also Pope text book: pp. 419-421). In the steady-
forcing case, all unit wavenumber vectors evolve toward (0, -1, 0) indicating that all vectors
align along the negative 2-direction (see Eq. (10)). Then, as a consequence of continuity u2
must vanish. The anisotropy tensor, at intermediate times (St < 5), approaches the two-
componential state as (u 2u2 ) vanishes. The (u3 u3 ) component does not change significantly as
it experiences no production. On the other hand, (ulul) grows rapidly. At long times, turbulent
fluctuations approach a one-componential state as the magnitude of (ulul) vastly exceeds that
of (U3 U3 ). Thus, in general, the dominant effect of steady shear is to augment Reynolds stress
component in the mean-flow direction ((ulul) in this case) and suppress the component in the
normal direction ((u 2u 2)). The augmentation of the streamwise component is due to the effect
of production and suppression of the flow-normal component is due to the action of pressure-
strain correlation. We will now argue that this suppression of the flow-normal component is
key to explaining the observed behavior.

Low forcing frequencies: Now let us consider the slowly rotating shear case. Initially, the
orientation of shear is such that (ulul) grows as seen from Fig. 4 and (u2u 2) rapidly decreases
(figure not shown). The decrease in (u2u2) is due to two factors. The negative production (that
develops as shear rotates) contributes to some of the reduction and the rest is due to rapid
pressure term as in the case of steady shear. During the intermediate stages of evolution, the
shear rotates (at a rate dictated by A) to an orientation so that the velocity gradient tensor is
of the form O9Ui

aXj bi2Jjl. (5)

The new orientation favors the growth of (u2u2 ) and reduction of (ujuj). If (u2u 2) is driven to
zero in the early stages before favorable shear alignment can augment it, then this component
will remain zero at all subsequent times. This is due to the fact that favorable shear requires non-
zero u 2 perturbation to produce (u 2u2) component of kinetic energy. During this intermediate
stage. the (ujul) component which had previously experienced growth is quickly depleted by
the action of pressure strain correlation. In the lowest frequency case, it is indeed driven to
zero during this stage as seen from Fig. 4. At slightly higher frequencies, the depletion is
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not complete in one cycle of shear rotation. If the alignment of shear changes before (ulul) is
completely depleted in the second quarter of the cycle, this component of stress will increase
as it experiences favorable shear in the third quarter of rotation. Then, (ulul) will alternately
rise and fall, with depletion exceeding growth in each quarter cycle. Ultimately, the stress will
vanish over several cycles of shear rotation as seen in A/S = 0.14 case in Fig. 4.

The role of rapid-pressure strain correlation can now be summarized as follows. This term
depletes the Reynolds stress component in the flow normal direction: (u 2u 2) during the first
and third quarter and (ulul) during the second and fourth quarter of each shear rotation cycle.
At low frequencies, the depletion is more complete than at high frequencies. It is this effect
that leads to the observed behavior. Thus, in the absence of pressure-strain correlation, the
Reynolds stress behavior will be quite different.

Intermediate forcing frequencies: As the frequency of rotation increases further (0.14 <
A/S < 0.16), more of the stresses survive the depletion cycle due to rapid changes in the
orientation of strain and consequently the action of pressure. Once in every few cycles, the
shear aligns favorably with the existing fluctuations leading to the spurts of rapid growth.
Following these periods of fast growth, the changing strain orientation leads to fairly steep
decline due to the combined action of pressure-strain correlation and negative production. But
tile decline is not large enough to offset the growth, resulting in a net gain of kinetic energy after
each growth-decline cycle. With increasing frequency, the growth spurts occur more frequently.
However, the magnitude of growth diminishes as the requisite favorable alignment occurs for a
shorter duration.

High forcing frequencies: When the forcing frequency is very high, the strain rate rotates
too rapidly and production is not sustained for a long enough period for (ulul) to grow. The
rapid rotation also causes the pressure-strain correlation to change too quickly to suppress
(u 27 2 ) to any significant degree. As a result, the kinetic energy changes very little from its
initial value.

Phase difference between mean strain tensor and Reynolds stress. The evolution
equation for kinetic energy is

Ok
= -2kbijSij. 

(6)

The orientation between bij and Sij is crucial in determining the evolution of k. It is the
action of rapid pressure that creates the phase lag between the applied strain and Reynolds
stress. Clearly, the phase lag will depend strongly on the shear rotation rate. For a given A/S,
calculations show that the phase differences between bl, and S11 vary about a median value
(a) as a function of time. It is this median value that is important for explaining the observed
behavior as a function of forcing frequency. It is hard to directly compute this value from the
data and we will surmise this indirectly from the sign and magnitude of production. Positive
production will indicate favorable alignment (7r/2 < a < 7r). Negative production will indicate
unfavorable alignment (7r/2 > a > 0).

1. In the constant shear case, the monotonic growth in production (Fig. 5) clearly indicates
that the alignment between strain and stress is favorable (a ;: 7r).

2. In the low non-zero frequency cases, the production is negative at long times indicating
that the alignment is unfavorable (a < 7r/2), consistent with the explanation provided
earlier in this section.

7



3. The nearly periodic behavior of production at the intermediate frequencies (Fig. 9) shows
that the phase difference is nearly 7r/2 but with occasional favorable alignment (a > 7r/2)
resulting in positive spikes in production as explained earlier in the section. While some
negative excursions of production are also seen, the positive spurts outnumber the negative
ones leading to overall positive production during these periods. On an average, in the
intermediate regime, the alignment can be taken to be slightly favorable (a > r/2).

4. At the highest frequencies, it is clear that the phase difference is a 7r/2 on an average,
as no particular alignment is sustained for long enough time.

Simple mathematical model: Now we will attempt to construct a simple mathematical
model that can mimic the observed range of behavior. Consider the scalar equation

Ok
-- -k cos(t)cos(t + a) (7)

In the equation, a is the phase lag and cos(t) and cos(t + o) model bl, and S11 , respectively.
Integrating the above model, we have the following evolution equation for the kinetic energy:

k(t) = e 2 (8)

Figure 15 shows the evolution of k using Eq. (8) for several values of a. We can clearly see
that there are three different regimes of responses depending on value of a. For 7r/2 < a < 7r,

model-k evolution is very similar to that seen in the intermediate forcing regime. For a= 7r/2.,
k is periodic and the RDT behavior in high frequency regime is recovered. When av < 7r/2,
k decays to zero. In the RDT case, at low forcing frequencies, k settles down to a constant
value lower than unity. Thus, the turbulence responses to rotating shear can be explained
qualitatively.

Summary of Study 1. The main findings are:

1. At low forcing frequencies, kinetic energy grows. At high frequencies, k decays. The
critical frequency at which the asymptotic behavior changes from growth to decay is found
to be around w/S,,=0.5. At very high frequency (w/Sm, = 10), the periodically-forced
turbulence behaves similar to decaying isotropic turbulence.

2. The observed behavior can be explained in terms of the stress-strain phase-lag P at dif-
ferent forcing frequencies. The phase-lag goes from 7r at low frequencies to 7r/2 at high
frequencies. Phase-lag of 7r/2 corresponds to no net production. Thus the production de-
creases progressively with increasing frequency. When the level of production falls below
dissipation, turbulence cannot be sustained.

3. Normal anisotropy oscillates about non-zero asymptotic values in growth cases. In decay
cases, the cycle-average of anisotropy appears to vanish at long time.

4. RDT does not capture the frequency-dependence of the asymptotic behavior. It predicts
periodic k-behavior for all frequencies.
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5. Second moment closures do capture the asymptotic frequency dependence, although the
predicted critical value is smaller than that observed in DNS.

6. Comparison of RDT and DNS results appears to indicate that the onus is on the closure
models for the non-linear terms to produce the observed asymptotic frequency depen-
dence.

The next step is to develop second moment closures that do capture the behavior accurately.
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Figure 1: Extended kinetic energy evolution
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Figure 2: Kinetic energy evolution at various wavenumber discretizations: AIS = 0.16
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Figure 3: Low-frequency evolution of kinetic energy
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Figure 4: Low-frequency evolution of bl,
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Figure 5: Low-frequency evolution of Pl
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Figure 6: Low-frequency evolution of 4)11
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Figure 8: Intermediate-frequency evolution of bl,
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Figure 9: Intermediate-frequency evolution of P11
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Figure 10: Interniediatc-frequency evolution of 4)1
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Figure 14: High-frequency evolution of 4)1
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Figurc 15: Evolution of k for various values of phase lag, a
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3 Rotating Shear Flow

The second form of unsteady homogeneous shear which is being investigated in a concurrent
study is a rotating shear flow:

aU, [ sin(27rAt)cos(27rAt) cos 2 (27rAt) 0 1
Ot = S -sin 2 (27rAt) -sin(27rAt)cos(2rAt) 0 (9)a..0 0 0

In this flow, the cigen values of the inean-strain rate tensor are constant but the cigen-directions
rotate at a constant rate (elementary form 2). When the rotation rate is zero, the forcing reduces
to a simple homogeneous shear. Again, the required time-varying velocity field is produced using
a body force. Due to the basic difficulties in performing DNS of this flow, we will resort to RDT
computations and restrict our considerations to linear processes. This type of unsteadiness is
interesting for two reasons: (i) it is one of the four elementary forms of unsteadiness as discussed
in the introduction; and (ii) the observed behavior as a function of frequency is remarkably
different from that of other unsteady flows (periodic shear flows and homogeneous shear flow
in rotating reference frame). Rotating homogeneous shear flow shares some common features
with the homogeneous turbulence subject to periodic shear (elementary form 1) and rotating
shear (elementary form 2). When considered in the inertial frame, it is clear that the cigen
directions of the applied shear rotate and turbulence is subjected to time-dependent forcing.
Rotating homogeneous shear flow has been the subject of many theoretical and computational
studies. The major findings from these studies are: (a) for small rates of rotation (Q) relative
to shear S, turbulence grows in time, although slower than in the unrotated shear case; and,
(b) for high rates of rotation, turbulent fluctuations become two-dimensional (as per Taylor-
Proudman theorem) and turbulence decays rapidly. It is found that the observed behavior is
well predicted by linear stability theory. Linear stability equations predict that turbulence can
be sustained only for the range of parameter values 0 < JQI/S < 0.5. This range is very close to
that observed in experiments and second-moment closure model calculations. We will examine
if turbulence subject to rotating shear in an inertial reference frame exhibits similar behavior.

Governing Equations. The governing equations are most expeditiously solved in Fourier
space (K). The linearity of the governing equation at the RD limit permits the analysis of
velocity (fi(k, t)) and pressure (P(k, t)) of each Fourier mode independently. The analysis is
typically performed in a coordinate frame moving with the mean velocity. Thus the wave-
number vector of a Fourier mode itself is a function of time, Pope (2000). It can be shown that
the evolution equations for k(t) and fi(t) are given by:

dki , aUjdt ___:L (10 )

dtt a (11)

Note that these Fourier coefficients are further subject to the following incompressibility con-
dition:

fiii = 0. (12)
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The behavior of the velocity and pressure fields can be determined by simple integration over
all wavenumbcrs. Summing this equation over all wavenumbers gives the evolution equation
for the Reynolds stress in the RD limit:

9 au, (U V (k, 2, +
-(Uuj) = ~ - _j_)_ UU)_ (3

-t aXk Xk (13)

where Mijkl is a fourth order tensor defined by

Mijkl= fiijk6. (14)

Turbulence production, Pij is identified as

Pi= -(UjUk) Ou- - (UiUk) (15)

and the rapid pressure-rate-of-strain tensor (D(') is defined as

41r) = 2 (ikki + a'IkjI). (16)

Then Eq. (13) can be rewritten as

a (uiuj) = P,j + (P r) (17)
at Z

Thus, at the rapid distortion limit, Reynolds stress evolution is governed entirely by the linear
processes of production and rapid pressure-strain correlation. The first step in performing the
RDT simulation is to initialize the turbulence velocity field. In the present study, we consider
an initially isotropic velocity field that is subsequently subjected to unsteady forcing.

3.1 DNS Results.

The effects of six different forcing frequencies on turbulence evolution are studied: WISax
= 0.125, 0.25, 0.50, 0.75, 1.0 and 10. In all the cases, the initial turbulence field is isotropic
and prepared as described earlier and allowed to evolve. The various statistical moments
are computed as a function of time. The results are sorted into several different categories:
kinetic energy and dissipation; production; shear anisotropy; normal anisotropy; Reynolds
stress budget; and, limiting high-frequency behavior. Each category is examined individually
and in relation with other categories.

3.1.1 Evolution of k and E

In all the cases studied, turbulence decays initially as the production is nearly zero (due to
Reynolds stress isotropy) and dissipation is comparatively large. After the initial decay, subse-
quent evolution of k is different for different frequencies as shown in Fig. 24. In W/SmaO.125
and 0.25 cases, k grows rapidly after the initial period of decay. The growth, however, is not
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monotonic and cyclic variations from the mean trend is very much in evidence. In the case
of w/S=0.5, the initial decay period is followed by a long duration of purely periodic behav-
ior. Beyond Sma,t z 25, the kinetic energy shows signs of very slow growth. In w/S,,.=0.75
and 1.0 cases, k appears to decay with each cycle of applied strain. It is clear that two dis-
tinct turbulence responses are possible depending on the frequency of forcing. At low shear
frequencies, turbulence grows at long times, although not necessarily monotonically. At high
shear frequencies, turbulence decays. The switch from turbulence decay to growth occurs at a
frequency of approximately wIS,,,, = 0.5. It is likely that at some normalized frequency close
to 0.5 turbulence neither decays nor grows. It is however, difficult to precisely pin-point this
value of frequency for which the turbulence level remains close to its initial condition. While
the turbulence dynamics in the growth cases is likely to be similar to the steady forcing case,
the physics of the decaying cases need further investigation.

Two decaying cases (wlS,,a = 0.5 and 1.0) are studied in more detail next in Figs. 25
and 26. In these figures, the cycles of k variation are compared to those of S-variation and
the behavior of dissipation is also examined. Clearly, the frequency of variation k is twice
that of shear. We identify five points in time (A, B, C, D, and E) in one period (TO) of shear
cycle. Points A, C, and E correspond to consecutive zero-crossing times of S and points B and
D correspond the consecutive minima times in k variation. In w/Smx,=1.0 case, consecutive
k peaks have progressively smaller magnitudes indicating decay. In the w/S,a = 0.5 case,
consecutive peaks in the intermediate period of evolution are nearly identical.

In all the cases considered, the evolution cycles of k and E are in phase. This observation
has important modeling implications. The current closure strategy of modeling production of
dissipations in terms of production of kinetic energy appears to be valid for time-dependent
forcing as well, at least at these low Reynolds numbers.

3.1.2 Time dependence of P/E

A simple examination of the kinetic energy equation in homogeneous flows

dkdk P E(18)
dt

reveals that k-evolution is completely dictated by the difference between production and dissi-
pation. In order to understand the observed evolution of k, we investigate the behavior of P/E
ratio. This ratio must exceed unity for turbulence to grow.

Figures 27 and 28 show the evolution of PIE. The evolution is generally oscillatory with
periods of negative production. Negative production is rarely seen in turbulence subject to con-
stant forcing but may be important in many practical flows. Over the first half-cycle of forcing,
strain and production are in phase and their frequencies appear to be the same. However, a
phase difference soon develops and the frequency of the ratio (P/E) quickly becomes twice that
of the applied strain as can be seen from monitoring the five reference points A, B, C, D and
E (defined in Figs. 25 and 26). At all these points, production goes to zero. The zeros at A,
C and E are due to the strain-rate going to zero. The zeros at B and D, it will be seen soon,
are due to vanishing Reynolds stress component (uIu 2). The frequency of the production cycle
drives the kinetic energy cycle. Thus, the kinetic energy cycle is also twice that of the applied
strain rate as seen previously. The cycle-averaged ratio grows gradually beyond unity in the low
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frequency cases: wIS,,x < 0.5. At higher frequencies, the cycle-averaged ratio lingers around
zero (e.g., wISm,a = 1 case shown in Fig. 28). Thus, the observed k behavior can be completely
explained in terms of the asymptotic trends of mean production-to-dissipation ratio.

3.1.3 Evolution of b12

To gain further insight into the behavior of P/,, we next examine the evolution of shear
anisotropy b12, which in conjunction with S(t) determines production. In constant shear tur-
bulence, b12 and S are of opposite signs.

The evolution of anisotropy component b12 in the w/S,,,,=0.5 case is shown in Fig. 29.
The time variation of shear is also given in the figure. For the first quarter of the cycle, b12
is in phase with S and evolution is as expected. As the value of the applied strain begins to
diminish after peaking, a phase lag develops. When the strain goes to zero at the half-cycle
mark, the stress is clearly non-zero highlighting the hysteresis effect. For a substantial portion
of the third quarter of the first cycle, stress and strain are of the same sign, implying that the
production is now negative. Toward the end of the third quarter, the stress passes through
zero and production becomes positive again. Throughout the fourth quarter of the first cycle,
the stress and strain are of opposite signs. At the end of the first cycle, the stress does not
return to zero. The phase-lag between stress and strain continues to grow for another cycle
of applied strain. By the end of the second cycle, stress and strain lock into a constant phase
difference and evolve at the same frequency. In this asymptotic state, the dynamics is again
examined using the reference points A, B, C, D and E. We divide the A-E time period into
four intervals: AB, BC, CD, and DE, as shown in Fig. 29. Just before time A, the shear is
negative, b12 is positive, and production is positive. In the period AB, shear becomes positive
while b12 still maintains positive values. In this period, production is negative as shown in Fig.
27. The negative production is also reflected in the rapid fall of k during the same period in
Fig. 25. It can be seen in Fig. 29 that shear and b12 are relatively small in period AB hence
the negative production is relatively small in magnitude. After time B, production returns
to positive values until time C. As seen in Fig. 29, concurrence of large shear and b12 values
produces large positive production during period BC. During period CD and DE, we see the
same kind of production behavior as in periods AB and BC.

Figure 30 shows the evolution of b12 for w/S,a=1.0 case. The differences between the
two cases are clearly evident. In w/Sma, = 1.0 case, b12 is not initially symmetric about zero
with the negative values being much larger than positive values. This is caused by the initial
sign of the applied shear. In our simulation, the initial shear is positive leading to large initial
negative values of b12 in the first half of the first cycle. At the second half of first cycle, the
shear is negative and b 12 is changing to positive values to keep in pace with the negative shear.
However, before the b12 can reach its full potential magnitude on the positive side, the first cycle
rapidly comes to an end and the applied shear is positive again. Thus, the positive excursions
of b12 are not as large initially as the negative excursions. With the passage of time, the bias
toward negative values decrease as the effect of the initial sign of applied shear fades and the
oscillations become more symmetric. Calculations with initial negative shear show the opposite
initial bias but do not change the observed asymptotic behavior of the evolution of kinetic
energy, production and dissipation.

The difference between the low and high frequency cases at long times is more important.
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Examining the time period A-E in the two cases, it can be seen that in W/Sma=1.O case, period
CD is much longer and period DE is much shorter than they arc in w/Sma=0.5 case. This
generates a large negative production during time CD and small positive production during
time DE in w/Sm,,x=1.0 case. Overall, the net production during a cycle can be judged by the
lengths of AB+CD and BC+DE which correspond to the times when production has negative
and positive values, respectively. If BC+DE is larger than AB+CD, net production will be
positive. Otherwise, the cycle average of production will be negative. As b12 and S vary
periodically, these lengths can be characterized by a single parameter: asymptotic phase lag
(0) between S and b12 . If 7r/2 < 0 < ir, we will have (BC+DE)> (AB+CD), and the net
production will be positive. If, on the other hand, 0 < 0 < 7r/2, we will have (BC+DE) <
(AB+CD), and the net production will be negative. If ¢ = 7r/2, then (BC+DE) = (AB+CD),
resulting in no net production in a cycle of applied strain. For constant shear case, considering
a constant shear as a pulse wave with infinite period, we have 0=7r. Thus the production will
be always positive. In our computations, the phase difference between stress and strain vary
initially, but lock into a constant value at latter times. The dependence of the lock-in phase-lag
as a function of the applied frequency is shown in the original paper. It is seen that phase
lag goes from nearly 7r in the very low frequency case to about 7r/2 in high frequency cases.
Thus, the net production decreases with increasing frequency of forcing. It is curious to note
that ¢ does not go below 7r/2 implying that net production is always non-negative. Thus, the
net energy transfer in each cycle is from the mean to fluctuating field, except at very high
frequencies at which the transfer goes to zero.

In order to sustain turbulence, the production must not only be positive, but must also
exceed dissipation. From our computations, it appears that for WIS,,x > 0.5, net cycle pro-
duction is smaller than net cycle dissipation. We identify the critical frequency as wcr = 0.5Smax,
beyond which turbulence cannot be sustained. At higher frequencies, dissipation rate exceeds
the rate at which energy is transfered from mean to fluctuating field.

3.1.4 Normal anisotropy

We now turn our attention to the normal components of Reynolds stress tensor. In inhomo-
geneous flows, these components play an important role in determining the secondary flow
structures of the mean velocity field. The details of the evolution of the diagonal anisotropy
components in w/S,,,x=0.5, 0.65 and 1.0 cases are given in Figs. 31, 32 and 33. The major
observations and their implications are now summarized.

The frequency of all normal (or diagonal) anisotropies is the same as that of kinetic energy
and twice that of the applied shear or off-diagonal (b12 ) anisotropy. This is to be expected as
the frequency of kinetic energy is also twice that of shear due to the influence of production.
That the diagonal Reynolds stress component should have twice the frequency off-diagonal
component can also be understood from a second point of view. Considering one cycle of the
evolution of (ulu2 ), we can expect (ulul) and (u2u 2), which are always positive, to attain their
maximum values during the maximum positive or maximum negative value of (uIu 2 ). The
diagonal Reynolds stress will attain their minimum value when (uIu 2 ) crosses zero on its way
from maximum to minimum value. Thus, in the time that it takes the off-diagonal component
to complete a half-cycle from maximum to minimum through zero, the diagonal components
complete a full cycle. The difference in frequency between the applied strain and diagonal
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stresses also has important modeling implications. Approximations which imply that stress
and strain have the same frequency will be invalid.

In the kinetic energy growth cases, the asymptotic cycle-mean anisotropy values are non-
zero. For example, in the case of wIS,a, = 0.5, the asymptotic cycle-mean values of bl, and
b22 are about 0.15 and -0.1 respectively. In general, at all forcing frequencies, component
b1l oscillates about a positive mean value and b22 about a negative value. The magnitude of
the cycle-mean values of diagonal anisotropies decrease with increasing frequency. Thus, with
increasing frequency, the diagonal stresses tend closer toward isotropic state. In all the decay
cases, normal anisotropy tends to zero asymptotically, even if it develops non-zero values during
first cycle of shear. Thus, the decay cases evolve asymptotically to isotropic turbulence.

3.1.5 Budget of Reynolds stress

Reynolds stress budgets offer more detailed insights into the physics of turbulence processes and
are very important for high-order moment closure model development. We will now investigate
the budgets of the various Reynolds stress components in the WISma, = 1.0 case. Although the
computations are performed with the lattice Boltzmann equation, the budgets will be discussed
in the context of the Navier-Stokes equations. (The Reynolds stress budget equations are given
in Section 3.) Following Pope (2000), production, pressure-strain correlation and dissipation
are represented by Pj, Rj and Eij. Wherever possible, these budgets will be put in perspective
with the budgets in constant shear homogeneous turbulence (Rogers 1986).

First and foremost, we must ensure that the numerical data is of high enough numerical
fidelity that the various high-order derivatives and moments in the budgets call be computed
with confidence. This is particularly important as the current computations employ novel
LBM approach rather than the tried and tested Navier-Stokes schemes. Figure 34 shows the
comparison of time derivative of Reynolds-stress (uIu 2 ) computed from two independent means.
One computation comes from summing the terms on the right hand side of Reynolds stress
equation. The second estimate of the time-derivative comes from the finite difference operation
on Reynolds-stress:

d (ujuj) (uiuj(t + dt)) - (uiuj(t - dt))

dt 26t
The results from these two different computations are indistinguishable. Further tests were
performed to ensure the fidelity of other budget-term calculations (figures not shown). The
results clearly indicate that all terms in the Reynolds-stress budget equation are adequately
accurate.

Figure 35 shows different terms in the budget of (uIu 2) evolution. The magnitudes of the
various terms diminish with time as k decays from its initial value. As is to be expected
in the case of off-diagonal stress, dissipation is quite small at all times. The pressure-strain
distribution always counters production and the difference between the two drives the evolution.
This balance is very similar to that seen in the constant shear case (Rogers 1986), with the
exception that production and pressure-strain distribution are now cyclic.

The budget of (ulul) evolution is shown in Fig. 36. As in the case of constant shear,
dissipation dominates the very early evolution (Sm,,t < 1) as the Reynolds stress value falls
rapidly. Although zero initially, production becomes the most dominant term soon (Sm,t > 1).
Interestingly, the peak value of normalized production in the time-varying and constant shear
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cases occur at the same normalized time: Sma,t = 2. Pressure-strain redistribution almost
always counters the effect of production, but there are rare instances when both the processes are
of the same sign. It remains to be seen if the current pressure-strain redistribution closures can
capture this behavior as most models assume that redistribution always counteracts production.
At the intermediate stages (1 < Smat < 10), the difference between production and the sum of
dissipation and pressure-strain redistribution drives the evolution. At later stages, dissipation
becomes negligible (in this decaying ease).

The time dependence of budgets of (u 2u2 ) and (u 3u3 ) are quite similar and latter budget is
shown in Fig. 37. For both components, production is absent. Dissipation dominates the initial
time (Smalt < 3) development but quickly goes to zero thereafter. The later development is
mainly due to pressure-strain redistribution. The production of (ulul) is the only source of
kinetic energy in this flow. We see that the magnitudes of production, the dissipation and
redistribution decrease with time. The increase of the magnitude of PIE in Fig. 28 is caused
by the faster decrease of E, rather than the increase of P.

Overall, it is clear that pressure redistribution plays a key role in determining the evolution
of various normal components. Calculations were performed to confirm that the trace of the
pressure-strain redistribution was indeed close to zero. Analysis of the three components reveals
that R11 and R 22 are nearly in phase, while the phase of R 33 is shifted nearly by 7r. This means
that energy is removed from (ulul) and (u2u 2) and added to (U3U3 ). This is different from
what is observed in constant shear homogeneous flow. In the constant shear case, pressure-
strain redistribution removes energy from (ulul) and augments (u 2u2 ) and (u3 u3 ). Closer
examination of the constant shear budgets of Rogers (1986) reveals that the rapid pressure-
strain redistribution does remove energy from both (ulul) and (u2u 2) and augments (u3 u3 ). It
is the slow pressure-strain redistribution that is responsible for the augmentation of the (u2u 2)

component. In the present time-varying shear case, we expect the non-linear slow term to be
less dominant at later times as the turbulence decays quickly.

3.1.6 Limiting high-frequency behavior

As mentioned in the Introduction, the present flow shares some similarities with homogeneous
shear flow in a rotating reference frame. For example, in both cases turbulence grows when the
frequency (of rotation or periodic variation) is small and decays when the frequency is large.
However, there are very significant differences in the turbulence dynamics in the two cases. In
the case of homogeneous shear flow in a rotating reference frame, turbulence tends to a two-
componential limit at large rotation rates in keeping with the Taylor-Proudman theorem. Two-
dimensionalization inhibits cascade (no vortex stretching) and diminishes production leading to
viscous decay of the velocity field at all scales. In the present case, on the other hand, turbulence
is isotropic at large frequencies of shear variation. The shear varies too rapidly to induce
anisotropy and produce kinetic energy. We anticipate that at high frequencies, turbulence
subject to rapidly varying shear will be more like decaying isotropic turbulence as production
will not be significant. To establish that this is indeed the case, we will now compare w/Sma,=l0
case with decaying isotropic turbulence.

In the decaying isotropic turbulence simulation, all the initial conditions are the same as for
homogeneous shear flow, except that wall boundary condition is replaced by periodic boundary
condition and there is no mean shear in the flow. Figure 38 shows the evolution of k and c
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for homogeneous shear and isotropic decaying cases. For consistency, time is normalized with
Si,a, although there is no shear in isotropic decaying turbulence. In homogeneous shear case,
at initial stage, k decays a little bit slower than in isotropic decaying case. But over all, the
decay rates are almost same for both cases. A similar examination of the dissipation rate
demonstrates that the evolution in the two cases are almost indistinguishable. The standard
power-law decay is recovered in both cases. It must be pointed out that there are about 15
shear cycles in the period over which the comparison is made.

Next we compare the evolution of anisotropy in the two cases in Fig. 39. The small level
of anisotropy seen in the initial condition is due to finite statistical sample size. The time-
development of the diagonal anisotropies in the decaying and high-frequency forcing cases are
quite similar, with the latter exhibiting small-amplitude oscillations about the former. With
regard to b12 , the difference between the two cases is quite discernible. The negative bias of
b12 in the forced case has already been explained above. The most significant features are: the
cycle-averaged b 12 in the forced case is quite different from the b 1 2 in the isotropic decaying case;
and the amplitude of oscillation is quite sizable. Despite the large amplitude of b12 variation,
the production is very small due to the fact that stress and strain are out of phase by ir/2.
Thus, the diagonal anisotropies, kinetic energy and dissipation are not very different from those
in the unforced decaying case.

Thus, the limiting turbulence behavior in homogeneous shear flow in a rotating reference
frame is dictated by Taylor-Proudman theorem and characterized by two-dimensional fluctua-
tions. In the periodic shear case, the limiting behavior is characterized by statistically isotropic
fluctuations and turbulence decays as in unforced case.

Summary of Study 2. The RDT results reveal that the turbulence response to this type
of rotating shear is somewhat unexpected. We observe the following responses as a function of
forcing frequency: (i) At low forcing frequencies (0 < A/S < 0.14), initially isotropic turbu-
lence rapidly evolves to one-component state and kinetic energy asymptotes to a value smaller
than the initial level. (ii) At intermediate frequencies (0.14 < A/S < 0.20), the turbulence
kinetic energy exhibits sporadic spurts of growth. (iii) At larger frequencies, production and
pressure-strain distribution perturb the field only slightly from its isotropic initial state. The
sporadic growth observed at the intermediate forcing frequencies is quite unexpected. A quali-
tative explanation for the observed behavior is presented in the referenced paper. It is argued
that the rapid pressure-strain correlation is responsible for this somewhat anomalous behavior.
Although the physics of the observed behavior is quite complicated, we demonstrate that by
simply accounting for the phase lag between stress and strain, the observed behavior can be
approximately reproduced. A more quantitative explanation will require precise closure model
for the rapid pressure-strain correlation. None of the current models come close to predicting
the behavior observed in this paper. Development of closure models that can quantitatively
capture the observed physics is the next step.
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Figurc 16: Computational domain. The statistics are obtaincd in the core region of computa-
tional domain which is 128 x 64 × 128.
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Figure 17: The profile of mean velocity at St -- 12 and the distribution of k(y) at initial
stage and St = 12. The wall effects are limited to regions ear the walls. In the inner region,

mean velocity agree very well with the ideal mean velocity and homogeneity of turbulence is
maintained. i
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Figure 18: Evolution of normal Reynolds stress in homogeneous turbulent shear flow (constant
shear). NS-DNS data are from Rogers (1986) with initial values of Re,, : 35 and S* = 1.2.
Experimental data are from Tavoularis and Corrsin (1981a) with ReA 284 at St = 8.6.
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Figure 19: The results of b 1 2 obtained from DNS using LBM and Navier-Stokes equations by
Jacobitz, Sarkar & Van Atta (1997) with the initial values of RcA = 44.72 and Sk/ = 2.0.
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Figure 21: Planar-averaged Reynolds stresses along y-direction at S,,,t = 34.55.
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Figure 22: Planar-averaged Pressure-strain correlations along y-direction at S,,,,t = 34.55.
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Figure 23: Planar-averaged components of dissipation tensor along y-direction at Sm,,t = 34.55.
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Figure 24: Evolution of k in various wIS,,, cases.
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4 Unfinished problems.

We now describe the unfinished problems that were initiated during the last year of the work.

4.1 Near wall unsteadiness issues

Fan & Lakshminarayana [1] and Mankbadi & Mobark [2] consider unsteady boundary layers
where either the wall or the free stream fluctuates. The flow is characterized by a near-wall
flow that fluctuates in phase with the wall and an outer region with a substantial phase shift.

An instantaneous log-law does not in general exist and near-wall formulations based on
the log-law and the equilibrium assumption are not appropriate according to Fan & Laksh-
minarayana. That disqualifies algebraic eddy-viscosity models and two-equation models with
log-law boundary conditions or with near wall damping functions based on the wall friction
(such as y+). Moreover the existing low-Re K models are developed for steady flows and do
not give satisfactory results for unsteady boundary layers.

Requirements on RANS models for highly unsteady turbulence. When the frequency
of large-scale unsteadiness increases and approaches the turbulence characteristic frequency,
turbulence is profoundly affected. That means that non-equilibrium effects become more pro-
nounced. The very extreme kind of unsteady turbulence is rapidly distorted turbulence which
has been thoroughly investigated in the first part of the study. It is reasonable to expect that
turbulence models that are suited for non-equilibrium turbulence will perform well in unsteady
turbulent flows as well. Some discussion in this regard can be found in Mankbadi & Mobark
[2]. In keeping with the objectives of current research, we identify the following physical flow
features as being crucial for successful RANS computation of unsteady wall-bounded flows:

1. The unsteady wall shear stress is out of phase with the flow away from the wall. Explicit
corrections of the near wall influence cannot be based on the wall friction velocity u, .
The local turbulent velocity scale vrK- may be an alternative and near-wall functions may
be based on R. = vr-Ky/v or Rt = K 2 /V.

2. The near-wall unsteady region decreases in size for increasing frequencies and could be of
the order of the viscous sub-layer. Correct and consistent near-wall asymptotic behavior
is thus important for correct prediction of the mean wall shear stress. It is also important
that the turbulence profiles are well reproduced through the buffer layer and thus models
such as the Jones & Launder and the Wilcox standard K - w models are not well suited
due to the quite bad reproduction of the peak in the K-profile.

3. The prediction of boundary layer separation is important for capturing the unsteady flow
around transonic airfoils. The eddy-viscosity assumption fails to correctly predict the
production of the turbulent kinetic energy. That can instead be obtained by some ad hoc
limitation of the production or eddy-viscosity but the same effect is obtained by using
models based on full RST models.

4. When the frequency of the unsteadiness increases, the capability of the model to predict
nonequilibrium turbulence increases in importance. That is not very well fulfilled by
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standard cddy-viscosity two-equation models, but somewhat improved in e.g. the Menter
SST K - w model. Also here models based on full RST models are better suited for
describing such flows.

Objective and approach. The main objective of this research is to seek physics-based mod-
ifications to current two-equation and second moment closure (SMC) models to improve their
performance in unsteady flows. In such flows, the quasi-steady assumption will be inadequate.
In this research period, we explored the effects of two important changes to the standard tur-
bulence model paradigm. First and foremost, we recognize that spectral transfer rate and
dissipation are not equal to one another in statistically unsteady turbulent flows. Given the
nature of spectral energy cascade, it can be easily argued that dissipation lags behind cascade
rate when the energy-containing range of the spectrum undergoes rapid changes. This has
significant impact on the turbulence length scale equation and we propose a 2-equation length-
scale model to account for these effects. This will have an impact on the current two-equation
(which will become 3-equation) and SMC closures. An important inference from the above
list of desirable features mentioned above and our previous DNS (direct numerical simulations)
and RDT (rapid distortion theory) studies is that there could be a significant phase difference
between the imposed mean velocity gradient (mean strain) and Reynolds stress. This is due to
the fact that the Reynolds stress depends on the strain-rate history rather than the local mean
strain rate. Thus, in our second investigation, we study the effect of introducing a phase lag
between stress and strain in the Boussinessq constitutive relation. This work will only affect
current two-equation models. This phase-lag can appear intrinsically in SMC models.

4.2 Two-equation length-scale model

The standard K - E model is written as

DKDK - P-c+DK,
Dt

DE 2
Dt - P, - C2 - + D,, (19)

where P is the production of the dissipation E. In the standard K - c approach, the turbu-
lence spectra is assumed to be in equilibrium, and, thus, P, may be directly related to P, the
production of K

P = (. (20)
K

However, in non-equilibrium flows the E equation should not immediately respond to a
sudden change in production of K. Therefore, we propose to add relaxation to the production
of E by adding an additional transport equation for s = P.

The resulting three-equation model may be written as

DKD = P-E+DK,
Dt

- = s - -+ D ,
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Dt K K

At this stage, let us neglect the diffusion of s (D, = 0). The relaxation time scale is
proportional to the turbulent time scale K/. with the relaxation proportionality constant C,,
being of order unity. This model will have the correct asymptotic behavior in homogeneous
decaying turbulence. However, the asymptotic state in homogeneous developing flow will not
be obtained. The reason is that the production of E will not be constant at equilibrium. In order
to obtain the correct asymptotic state, we may let s represent the production of .normalized
by K, and, thus, s becomes constant at the asymptotic state. The resulting three-equation
model then becomes

DK- = P-+DK,

Dt

D Ks - C2 2- + D,
Ds E/E P\)
Dt - K kCl e - s + D,. (22)

In order to solve these equations in wall bounded flows we need some near-wall treatment. The
Wilcox standard K - uw model is one of the preferred models, since it does not rely on friction
velocity scaling. Let us transform equations (22) to a K - w - s form, where w is defined as

(23)

The transformed model reads
19K
Dt = P- O*wK+DK,
Dt
D9w s wPDw - W (C,2 - 1))3*W 2 + D ,,
Dt [* K
D s ' P
D- = Q, #*w(C Ifl*P -3) (24)Dt -K f---

The Wilcox K - w model coefficients are related to the K - c coefficients by the following:

0* -- CM = 0.09 - CO = 0.09,
(Y (Cl - 1) = 0.556 -Cd = 1.556.,

3= 0*(C,2 - 1) = 0.075 ---+ C,2 = 1.883. (25)

The author would like to further pursue this work in the future. (The three-equation model
was developed in collaboration with Dr. Stefan Wallin of FOI/KTH, Sweden.)

4.3 Phase-lagged Boussinessq Approximation

As demonstrated in our previous papers (published previously under this project), in highly
unsteady flows, Reynolds stress lags behind mean-flow strain. This is due to the fact that the
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stress depends on the strain-rate history rendering the standard Boussinessq approximation
invalid. We are currently investigating a model described by the following equations:

dk

dt
dc P E €2

Cea C -2  ,
dt = k k

( 2 kk 2(u u,) : -k'-c" s3

3 E=2k 6j - 2cMVs k i(t- P)3

P = -(uiuj) = 2vTS,j(t)Sij(t - p). (26)

In future work, the author will demonstrate this model possesses many important features that
have not yet been fully exploited in current literature.
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